Machine Reading Tea Leaves: Automatically Evaluating Topic Coherence and Topic Model Quality
نویسندگان
چکیده
Topic models based on latent Dirichlet allocation and related methods are used in a range of user-focused tasks including document navigation and trend analysis, but evaluation of the intrinsic quality of the topic model and topics remains an open research area. In this work, we explore the two tasks of automatic evaluation of single topics and automatic evaluation of whole topic models, and provide recommendations on the best strategy for performing the two tasks, in addition to providing an open-source toolkit for topic and topic model evaluation.
منابع مشابه
Reading Tea Leaves: How Humans Interpret Topic Models
Probabilistic topic models are a popular tool for the unsupervised analysis of text, providing both a predictive model of future text and a latent topic representation of the corpus. Practitioners typically assume that the latent space is semantically meaningful. It is used to check models, summarize the corpus, and guide exploration of its contents. However, whether the latent space is interpr...
متن کاملThe Sensitivity of Topic Coherence Evaluation to Topic Cardinality
When evaluating the quality of topics generated by a topic model, the convention is to score topic coherence — either manually or automatically — using the top-N topic words. This hyper-parameter N , or the cardinality of the topic, is often overlooked and selected arbitrarily. In this paper, we investigate the impact of this cardinality hyper-parameter on topic coherence evaluation. For two au...
متن کاملA Topic-Based Coherence Model for Statistical Machine Translation
Coherence that ties sentences of a text into a meaningfully connected structure is of great importance to text generation and translation. In this paper, we propose a topic-based coherence model to produce coherence for document translation, in terms of the continuity of sentence topics in a text. We automatically extract a coherence chain for each source text to be translated. Based on the ext...
متن کاملEvaluating Topic Coherence Using Distributional Semantics
This paper introduces distributional semantic similarity methods for automatically measuring the coherence of a set of words generated by a topic model. We construct a semantic space to represent each topic word by making use of Wikipedia as a reference corpus to identify context features and collect frequencies. Relatedness between topic words and context features is measured using variants of...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014